Der Gradient in 2 Dimensionen

Sei $f \colon D \subset \mathbb{R}^2 \to \mathbb{R}$ im ganzen Definitionsbereich partiell differenzierbar. Der (Spalten)-Vektor:

$$\nabla f(x_0, y_0) := \begin{pmatrix} \partial_x f(x_0, y_0) \\ \partial_y f(x_0, y_0) \end{pmatrix} = \begin{pmatrix} f_x(x_0, y_0) \\ f_y(x_0, y_0) \end{pmatrix}$$

heißt **Gradient** von f (am Punkt (x_0, y_0)). Analog zur Ableitung einer Funktion in einer Variablen gilt: Bewegt man sich vom Punkt (x_0, y_0) um einen Vektor $\vec{p} = (a, b)$, so ändert sich die z-Koordinate (die 'Höhe') der Tangentialebene an $(x_0, y_0, f(x_0, y_0))$ um

$$\Delta z = \langle \nabla f(x_0, y_0), \vec{p} \rangle := \nabla f(x_0, y_0)^T \cdot \vec{p} = f_x(x_0, y_0) \cdot a + f_y(x_0, y_0) \cdot b$$

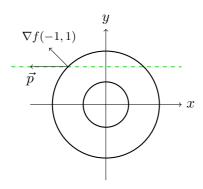
Bemerkung: Für Funktionen in einer Variablen ist bekanntlich $\Delta y = f'(x_0) \cdot a$.

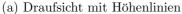
Beispiel Die betrachtete Funktion sei $f(x,y) = \ln(\sqrt{x^2 + y^2})$. Dann ist

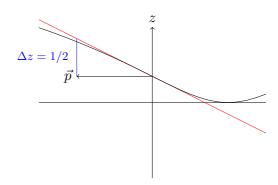
$$\nabla f(x_0, y_0) = \left(\frac{x}{x^2 + y^2}, \frac{y}{x^2 + y^2}\right)$$

Für $(x_0, y_0) = (-1, 1)$ und $\vec{p} = (a, b) = (-1, 0)$ ist also

$$\Delta z = \langle \nabla f(-1,1), \vec{p} \rangle = \frac{-1}{1+1} \cdot -1 + \frac{1}{1+1} \cdot 0 = 1/2.$$







(b) Schnitt des Graphen an ---

Wichtige Formeln und Folgerungen

(i) Für einen Punkt $(x,y) \in \mathbb{R}^2$ ist der Vektor von (x_0,y_0) nach (x,y) gegeben durch $\vec{p} = (x - x_0, y - y_0)$. Die z-Koordinate der Tangentialebene im Punkt (x,y) berechnet sich also zu:

$$z = f(x_0, y_0) + \Delta z = f(x_0, y_0) + \langle \nabla f(x_0, y_0), \vec{p} \rangle$$

= $f(x_0, y_0) + f_x(x_0, y_0) \cdot (x - x_0) + f_y(x_0, y_0) \cdot (y - y_0).$

und wir erhalten die Gleichung der Tangentialebene.

Bemerkung: Im Eindimensionalen gilt: $y = f(x_0) + f'(x_0) \cdot (x - x_0)$.

(ii) Ist $|\vec{p}| = 1$, so ist $s(\vec{p}) = \langle \nabla f(x_0, y_0), \vec{p} \rangle$ die **Steigung** in Richtung \vec{p} . $s(\vec{p})$ wird maximal, wenn \vec{p} in Richtung $\nabla f(x_0, y_0)$ zeigt. **Der Gradient zeigt also immer in die Richtung des steilsten Anstiegs** und die Steigung in dieser Richtung ist

 $s\left(\frac{\nabla f(x_0, y_0)}{|\nabla f(x_0, y_0)|}\right) = |\nabla f(x_0, y_0)|.$