komplexe Zahlen

Aufgabe 1 Es seien die komplexen Zahlen $z_1 = 1+3i$ und $z_2 = 2-i$ gegeben. Berechnen Sie folgenden Ausdrücke und geben Sie jeweils Realteil und Imaginärteil vom Ergebnis an:

(a)
$$z_1 \cdot z_2 + 5$$
. (c) $z_2 \cdot i^{10}$.

(b)
$$\frac{z_1^2}{\overline{z_2}}$$
.

Aufgabe 2: komplexe Nullstellen Berechnen Sie die komplexen Lösungen der Gleichung $4z^2 - 6z + 5 = 2z$.

Aufgabe 3: Bogenmaß und Trigonometrie Zeichnen Sie einen Einheitskreis und zeichnen Sie die folgenden Winkel α ein. Anschließend ermitteln Sie $\cos(\alpha)$ und $\sin(\alpha)$.

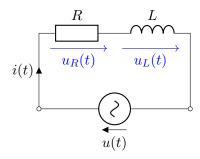
(a)
$$\alpha = \frac{\pi}{4}$$
 (c) $\alpha = \frac{5\pi}{6}$.

(b)
$$\alpha = \frac{3\pi}{2}$$
.

Aufgabe 4: Polarkoordinaten

- (a) Sei $z = -1 + i = \sqrt{2}\cos(\frac{3}{4}\pi) + i\sqrt{2}\sin(\frac{3}{4}\pi) = \sqrt{2}e^{\frac{3\pi}{4}i}$. Berechnen Sie z^8 indem Sie die Potenzgesetze ausnutzen.
- (b) Bestimmen Sie die Polarkoordinaten von $w = 1 + i\sqrt{3}$ und berechnen Sie w^6 .

Aufgabe 5 An folgendem Stromkreis aus einer idealen Spule mit Induktivität $L=40\,\mathrm{mH}$ und einem Widerstand $R=1\,\Omega$ soll eine Wechselspannung anliegen mit Frequenz 50 Hz und Amplitude $\hat{u}=10\,\mathrm{V}$, d.h. $u(t)=\hat{u}\cdot\sin{(\omega\cdot t)}=10\sin{(100\pi t)}$ ($\omega=2\pi f$).



- (a) Berechnen Sie den Strom i(t). Gehen Sie dabei vor wie folgt:
 - Schreiben Sie u(t) als komplexe Größe $u_c(t) = \hat{u} \cdot \exp(j \cdot \omega t)$. Dann ist $u(t) = \operatorname{Im} u_c(t)$. Wir benutzen j statt i für die imaginäre Einheit um Verwechslungen mit dem Symbol für Strom zu vermeiden.

- Schreiben Sie R und Lals komplexen Widerstand (Impedanz): $Z_c = R + j \cdot \omega L$
- Berechnen Sie dann $i_c(t)$ mit der Ohmschen Formel für Wechselspannungen $u_c(t)=Z_c\cdot i_c(t).$ i(t) ist dann Im $i_c(t).$
- (b) Bei (a) können Sie das Ergebnis auf die Form bringen $i(t) = \hat{i} \cdot \sin(\omega t + \varphi)$. Mit Amplitude \hat{i} und Phasenverschiebung (gegenüber u(t)) φ . Wie groß ist die Phasenverschiebung φ in Grad.